
How To Use Linux for Composer to
Deploy to the Cloud

Developers are placed into a tough situation when asked to deploy a working Docker container-
based application up to a cloud service. Traditionally, in addition to hours spent wading through
cloud services documentation, a deployment was a messy operation involving a combination of
docker exec, zip, unzip, sftp and ssh to get everything up and running. In this guide we show you
how to deploy directly from your local computer to Linux for PHP Cloud Services in minutes using
a fantastic new tool called Linux for Composer .

What the Heck is Linux for Composer?
At this early stage you may be thinking: well … I’ve heard of Linux, and I’ve heard of Composer …
but what the heck is Linux for Composer (LfC)? LfC is yet another incredible tool that comes out
of the Linux for PHP project. The brainchild of Foreach Code Factory CEO Andrew Caya, LfC is a
PHP package, hosted on github.com and packagist.org, made available via Composer.

Obviously any package residing on packagist.org is not Linux, nor the Linux kernel, but what LfC
allows you to do is to define a standard composer.json file that includes an extra set of directives
that essentially mimics some of the things you can do using Docker Compose. The main difference,
however, is that LfC will proceed to not only build the Docker container for you, but actually
upload it to a cloud service using credentials you supply. So, effectively, as long as your Docker
container works locally, with a single command, that same container is reconstructed instantly live
on the Internet. Yes … wow!

What Do I Need to Start?
So if you’re anything like me (e.g. total developer nerd), the next question is … where do I sign up?
Glad you asked! (Rhetorical question!) Before you being the happy next phase of your budding
career, you’re going to need to have some software tools installed. If you even got to this point in
the article, chances are that you already have most of these items.

Just to be on the safe side, here’s the list:

• Docker (https://www.docker.com/)

• Composer (https://getcomposer.org/)

• PHP (https://www.php.net/)

• Git (https://git-scm.com/)

• cURL (https://curl.haxx.se/)

In addition, you’ll need one of the following, depending on your operating system:

https://linuxforphp.com/
https://curl.haxx.se/
https://git-scm.com/
https://www.php.net/
https://getcomposer.org/
https://www.docker.com/
https://packagist.org/packages/linuxforphp/linuxforcomposer
https://github.com/
https://linuxforphp.net/
https://github.com/linuxforphp/linuxforcomposer
https://github.com/linuxforphp/linuxforcomposer

• Unix/Linux/Mac: A bash shell

• Windows 10: PowerShell

• Windows 7 – 8 (64 bit only): Docker Toolbox on Windows

• Windows Vista and earlier: we wish you well, friend! May the Force be with you.

You’ll also need to have some sort of software application you’re working on: one that’s suitable to
run in a Docker container. OK … assuming that you’ve got all the prerequisites in place, and have
configured a Dockerfile and any associated init scripts, the next step is to set up the cloud service.

What About the Cloud Service?
In order to deploy directly to the cloud, you’ll need a cloud service with a remote API to which LfC
can connect. We’re not talking Amazon here folks! There’s no way in … heck … they’re going to
open themselves up to that level of competition! Accordingly it’s better to leave the glitzy Amazon
department store, and have a look at some of the smaller outfits. Since this article is sponsored by
Linux for PHP Cloud Services, by a strange coincidence, they are exactly the outfit we’re going to
feature in this article! (Full disclosure: this author is a partner in this venture.)

To start off, create an account on Linux for PHP Cloud Services. Go to this page:
https://linuxforphp.com/signup, fill in the blanks, and click Sign Up. You will need to respond to
the email in order to activate your account.

The next step is to login and choose Plans. If you hover your mouse over the plan a description
pops up. After clicking Buy Now, a more detailed description appears with a server location choice.
Although from a connectivity perspective it doesn't matter where the server is located, from a legal
perspective, if sensitive customer data will be stored, the physical location of the server may be
important.

https://stg.linuxforphp.com/signup
https://docs.docker.com/toolbox/toolbox_install_windows/

Prices are extremely reasonable and there are free trial offers available. Promotional codes can be
applied when you go to checkout. Now that you’ve got a cloud service upon to contain your
application, let’s have a look at granting deployment access.

How Do I Make the Deployment Secure?
Obviously you don’t want any Dick, Jane (or Spot, for that matter!) to be able to deploy code to
your website. Accordingly, you’ll need to establish a security token that only allows code
deployment from a specific IP address. Please note that the IP address we refer to here, is not the
one you see on your own home or office network. The IP address needed is the one that’s visible to
the Internet.

To find your Internet-visible IP address, first of all, be sure that you are on the computer from which
you plan to deploy. You can then simply open a browser to this URL: http://ip2c.org/. Look in the
middle of the page for a sentence that reads Your IP is aaa.bbb.ccc.ddd.

You can now return to your Linux for PHP cloud services page for the plan you’ve chosen. From
the left side menu choose Access Tokens [1]. Enter your Internet IP address in the input area labeled
New IP Address [2], and click Add. Your new security access token will appear above [3].

http://ip2c.org/

OK, now that you’ve got access squared away, the next step is to install Linux for Composer.

How Do I Install Linux for Composer?
Linux for Composer is installed using Composer. The installation itself is quite simple. If you
installed Composer “globally” on your computer, just create a directory, or from the root of your
application project, issue this command:

composer require --dev linuxforphp/linuxforcomposer

Alternatively, if Composer available as a phar file, you would use this alternative:

php composer.phar require --dev linuxforphp/linuxforcomposer

To access Linux for Composer, you have a couple of different options, depending on where you
placed the LfC installation:

If You Placed It ... Execute Commands Using ...
… within your
application project

php vendor/bin/linuxforcomposer.phar <command>

… in a directory
/some/path

php /some/path/vendor/bin/linuxforcomposer.phar
<command>

For further information, have a look at the LfC installation documentation. Here is a screenshot of
the installation process:

In order to deploy your app, you next need to configure Linux for PHP.

How Do I Configure Linux for Composer?
Linux for Composer looks for a file named linuxforcomposer.json. This is the primary
configuration file, and serves the same purpose as the composer.json file serves for Composer. The
complete documentation on all settings in the linuxforcomposer.json file is available here:

https://linux-for-composer.readthedocs.io/en/latest/configuration.html

https://linux-for-composer.readthedocs.io/en/latest/configuration.html
https://linux-for-composer.readthedocs.io/en/latest/installation.html
https://www.php.net/manual/en/intro.phar.php

A quick way to get started is to issue the linuxforcomposer command with an init flag, which
generates a sample configuration file. Be sure you are in the main directory of the project you wish
to deploy. Issue the command as follows:

cd /path/to/project
php vendor/bin/linuxforcomposer.phar --init

This creates a default linuxforcomposer.json file which you can then modify to suit your application
needs.

Linux for Composer JSON File Keys
The first few lines of the default linuxforcomposer.json file appear as follows:

{
 "name": "linuxforphp/linuxforcomposer",
 "description": "A Composer interface to run 'Linux for PHP' … ",
 // other top-level keys not shown

The top-level definition keys are summarized here:

LfC Key Description
name The name of this project.
description A short description of this project.
single Use this key to deploy a single container. Defines the

Docker image and characteristics of the container to be
defined, including operational mode, port mappings, volumes
and data persistence.

docker-compose Use this key if you plan to deploy multiple containers
simultaneously. Sub-keys define the location and access
information on the online resource containing the docker-
compose.yml file.

lfphp-cloud This key is used in conjunction with either of the above keys.
Use it to define the account, username and access token for
your Linux for PHP Cloud Services account.

Within the single top-level linuxforcomposer.json file definition key, there are two primary sub-
keys:

• single : image {}

• single : containers {}

Let's first have a look at defining a single container using LfPHP.

Defining a Container Based Upon the LfPHP Docker Image
Within the definition for single:image{} you can define settings that pertain to the Linux for
Composer docker image (LfPHP) by defining the following:

{
 "name": "linuxforphp/linuxforcomposer",
 "description": "A Composer interface to run 'Linux for PHP' … ",
 "single" : {
 "linuxforcomposer" : {
 // other settings not shown
 }
 }
}

The following table summarizes the single : image : linuxforcomposer settings:

single:image:
linuxforcomposer

Description

php-versions : []

Example:
"php-versions" : [
 "7.1",
 "7.2"
]

This is an array of PHP versions you wish to create. If
more than one version is included, a detached container is
created for each one listed. If you specify "8.0", the latest
alpha version of PHP 8 is compiled. For a list of versions
have a look at the docker hub listings for linuxforphp-8.2-
ultimate. Use the version, but leave off "-nts" or "-zts".

scripts : []

Examples:
"scripts" : [
 "lfphp-get cms drupal app"
]

"scripts" : [
 "lfphp-get \
 php-frameworks \
 symfony demo"
]

"scripts" : [
 "lfphp"
]

Note: the "\" is used to indicate
that the option should be all on a
single line.

Defines a command to execute upon container startup.
Common examples include "/bin/bash" to start a
command shell, or "lfphp" to launch components of a
LAMP stack.

Use this script to install and launch a Content
Management System (CMS) such as Drupal or
WordPress (choices listed below):
"lfphp-get cms CMS PATH"

Use this script to install and launch a PHP framework such
as Laravel or Symfony (choices listed below):
"lfphp-get php-frameworks FRAMEWORK PATH"

PATH becomes a subdirectory off /srv.

Alternatively, just specify "lfphp" as the script, and you will
not only start all built-in services (e.g. Apache, MySQL,
PHP-FPM, etc.), but this also signals the cloud to provide
a file manager and phpMyAdmin database access.

thread-safe : <bool>

Example:
"thread-safe" : true

Set to true if you wish to install an image based on one of
the
*-zts (Zend Thread Safe) docker images. The default is
false, which causes one of the *-nts (Non-Thread Safe)
images to be used.

https://hub.docker.com/r/asclinux/linuxforphp-8.2-ultimate/tags
https://hub.docker.com/r/asclinux/linuxforphp-8.2-ultimate/tags
https://hub.docker.com/u/asclinux
https://hub.docker.com/u/asclinux

The following table summarizes options for lfphp-get scripts

lfphp-get cms path lfphp-get php-frameworks path
concrete5
drupal
joomla
wordpress
magento
prestashop

symfony
laravel
cakephp
slim
lightmvc
lightmvc-swoole
laminas
mezzio

NOTE: you can also specify zf if you wish a legacy Zend Framework installation,
or ze for a legacy Zend Expressive installation (otherwise use laminas or mezzio).

As you can see, the automation possibilities inherent using the LfPHP image are staggering.
However, in many cases you might be modeling a customer environment not based upon LfPHP, in
which case you would need to use the dockerfile key, discussed next.

Here is an example linuxforcomposer.json file that deploys WordPress:

{
 "name": "linuxforphp/linuxforcomposer",
 "description": "'Linux for PHP' example.",
 "single": {
 "image": {
 "linuxforcomposer": {
 "php-versions": ["7.4"],
 "script": ["lfphp-get cms wordpress demo"],
 "thread-safe": "false"
 }
 },
 "containers": {
 "modes": { "mode1": "detached" },
 "ports": {
 "port1": ["8181:80"]
 },
 "persist-data": {
 "mount": "false",
 "root-name": "",
 "directories": { }
 }
 }
 },
 "lfphp-cloud": {
 "account": "account_name",
 "username": "user_name",
 "token": "a1b2c3e4e5f6"
 }
}

Defining a Container Based Upon a Custom Dockerfile
If you do not wish to use LfPHP you can also define settings that pertain to a custom Dockerfile.
that draws from any image available on dockerhub:

{
 "name": "linuxforphp/linuxforcomposer",
 "description": "A Composer interface to run 'Linux for PHP' … ",
 "single" : {
 "dockerfile" : {
 // other settings not shown
 }
 }
}

NOTE: the two sub-keys linuxforcomposer and dockerfile are not mutually exclusive.
However, if there is a conflict between the two settings, those defined in dockerfile take
precedence. Also, of course, the base image defined in the Dockerfile indicated by the
single:image:dockerfile:url sub-key can be any image, but is not restricted to
LfPHP.

The following table summarizes the single : image : dockerfile settings:

single:image:dockerfile Description
url : <string>

Examples:
"url" : "config/Dockerfile"

"url" : "http://dns.com/Dockerfile"

This identifies the location of the Dockerfile used
to build the image.

container-name : <string>

Examples:
"container-name" : "my_project"

Defines a tag used to name the image. LfC
appends a random key to the end of this string
when it runs the container.

username : <string>

Examples:
"username" : "info@etista.com"

This optional key represents the username in a
situation where the location of the Dockerfile (see
url above) is remote and password protected.

token : <string>

Examples:
"token" : "a1b2c3d4e5f6"

This optional key represents either the password
or access token in a situation where the location
of the Dockerfile (see url above) is remote and
password protected.

Here is an example linuxforcomposer.json file that deploys a container using a custom Dockerfile:

{
 "name": "linuxforphp/linuxforcomposer",
 "description": "'Linux for PHP' example.",
 "single": {
 "image": {
 "dockerfile": {
 "url": "Dockerfile",
 "container-name": "custom_app",
 "username": "",
 "token": ""

}
 },
 "containers": {
 "modes": { "mode1": "detached" },
 "ports": {
 "port1": ["8181:80"],
 "port2": ["8443:443"]
 },
 "persist-data": {
 "mount": "false",
 "root-name": "",
 "directories": { }
 }
 }
 },
 "lfphp-cloud": {
 "account": "account_name",
 "username": "user_name",
 "token": "a1b2c3e4e5f6"
 }
}

Now let's have a closer look at defining Docker container runtime settings.

Defining Container Runtime Settings
The single : image : containers sub-key can be used to define container runtime characteristics in
much the same manner as docker run. The following table summarizes the single : image :
containers sub-keys:

single:image:containers Description
modes : [key:<string>, etc.]

Examples:
"modes" : [
 "mode1":"detached",
 "mode2":"tty"
]

This sub-key represents one or more operating
modes for the container. There are three
possibilities: detached, interactive and tty.

docker run options, in order: -d, -t and -i

ports:{
 key : [<LOCAL:DOCKER>,etc.]
}

Examples:
"ports" : {
 "port1": ["8181:80"],
 "port2": ["8443:443"]
}

Defines sets of port mappings between the local
computer (LOCAL) and the Docker container
(DOCKER). You can define as many sets as are
appropriate.

If you are deploying multiple containers, each
additional entry for each set is then assigned to
each successive container. (see discussion
below).

docker run option: -p

volumes : {
 key : <LOCAL:DOCKER>,
 etc.
}

Examples:
"volumes" : {
 "volume1":
 "/home/ned/repo":"/repo"
}

This optional key represents a mapping between
a local directory path and a path inside the
container. Volumes mapped in this manner are
shared between containers.

docker run option: -v

persist-data : {
 mount : <bool>,
 root-name : <string>,
 directories : {
 key : <PATH>,
 etc.
 }
}

Examples:
"persist-data" : {
 "mount" : true,
 "root-name" : "my_project_vol",
 "directories" : {
 "directory1" : "/srv/data"
 }
}

Use this option to have Docker create a volume
that is persistent. The following sub-keys must be
defined:

mount : set true to have Docker mount the
volume (and therefore have these settings take
effect).
root-name : unique Docker volume name. It's
recommended to use the project name as a
prefix.
directories : assign one or more key/value
pairs, where the key is "directory1", "directory2",
etc., and the value is a string representing a path
internal to the Docker container once running.

docker volume create

https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/

Port Mapping Using Linux for Composer
The single : image : containers : ports sub-key is an array that maps ports between the local
computer and the Docker container. Each additional array element represents a different port. In
this example, there a single image defined by a Dockerfile. Local port 8181 is mapped to container
port 80, and local port 8443 is mapped to container port 443:

{
 "single": {
 "image": {
 "dockerfile": {
 "url": "Dockerfile",
 "container-name": "phpcl_jumpstart_lfphp"
 }
 },
 "containers": {
 "modes": {
 "mode1": "detached"
 },
 "ports": {
 "port1": ["8181:80"],
 "port2": ["8443:443"]
 },
 "persist-data": {
 "mount": "false"
 }
 }
 }
}

When you plan to deploy multiple containers, it starts to get confusing. Each sub-sub-key is itself
an array. Each sub-sub-sub array maps to each of the multiple containers. Multiple containers are
launched, for example, when you specify more than one version of PHP.

In this example, two containers are launched: one based upon PHP 5.6, the other upon PHP 7.4:

{
 "single": {
 "image": {
 "dockerfile": {
 "url": "Dockerfile",
 "container-name": "phpcl_jumpstart_lfphp"
 },
 "linuxforcomposer": {

 "php-versions": ["5.6","7.4"],
 "script": ["lfphp"],
 "thread-safe": "false"
 }
 },
 "containers": {
 "modes": {
 "mode1": "detached"
 },

When we get to port mappings, the following example has local ports 8181 and 8443 mapped to the
PHP 5.6 container ports 80 and 443 respectively. For the PHP 7.4 container, on the other hand, the
local host ports 8282 map to the 7.4 container's port 80, and port 8543 maps to the 7.4 container's
port 443:

 "ports": {
 "port1": ["8181:80", "8282:80"],
 "port2": ["8443:443", "8543:443"]
 },
 "persist-data": {
 "mount": "false"
 }
 }
 }
}

Next we have a quick look at configuring LfC to use docker-compose.

Defining a Container Using Docker-Compose
This option is useful if you are using Docker Compose, and plan to deploy multiple containers. An
example would be something like the following trio of "servers":

• Main Application Server

• Database Server

• Mail Server

The main work is not done by Linux for Composer, but rather in the docker-compose.yml file. The
coverage of the latter is beyond the scope of this guide. You can find more details here:

https://docs.docker.com/compose/compose-file/

The following table gives a summary of the settings for the top-level directive docker-compose:

docker-compose Description
url : <string>

Examples:
"url" : "/path/to/project"

"url" : "http://dns.com/project"

This identifies the location of the docker-
compose.yml file used to build the image. The
string can represent either a local directory path
to a repository containing the file, or a remote
location accessible via HTTP or HTTPS.

username : <string>

Examples:
"username" : "info@etista.com"

This optional key represents the username in a
situation where the location of the Dockerfile (see
url above) is remote and password protected.

token : <string>

Examples:
"token" : "a1b2c3d4e5f6"

This optional key represents either the password
or access token in a situation where the location
of the docker-compose.yml (see url above) is
remote and password protected.

https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/

Defining a Container Using LfPHP Cloud
The last top-level key in the linuxforcomposer.json file is lfphp-cloud, which allows you to define
parameters in order to deploy your application to LfPHP Cloud Services, or any other cloud service
allowing report deployment access. The following table gives a summary of the settings for the
top-level directive lfphp-cloud:

lfphp-cloud Description
account : <string>

Examples:
"account" : "infoetistacom22"

This identifies the cloud service account
associated with the access token (see below).

username : <string>

Examples:
"username" : "info@etista.com"

This optional key represents the login name for
the remote cloud service.

token : <string>

Examples:
"token" : "a1b2c3d4e5f6"

This key represents either the password or
access token for the remote cloud service.

Now that you have an idea what goes into the linuxforcomposer.json file, it's time for an example.

LfPHP Cloud Services Deployment Example
In this example, we have a demonstration app based on Mezzio, a micro-framework from the
Laminas project. The name of the project is IpWhat. It can get information on an IP address by
making a call to an external web service Ip2C. It also has an internal database, and can present a
list of names sorted alphabetically.

The first thing to do is to define the linuxforcomposer.json file.

Sample Linux for Composer JSON File
The file starts with a name and description:

{
 "name": "phpcl_jumpstart_lfphp",
 "description": "Demonstrates deployment using a Dockerfile",

Next we define the single:image block:

 "single": {
 "image": {
 "dockerfile": {
 "url": "Dockerfile",
 "container-name": "phpcl_jumpstart_lfphp",
 "username": "",
 "token": ""
 },

We also add a linuxforcomposer block mainly for added documentation:

 "linuxforcomposer": {
"php-versions": ["7.4"],

 "script": ["lfphp --mysql --phpfpm --apache"],
 "thread-safe": "false"

}
 },

Since we'll be deploying to the cloud service, there's no need for tty nor interactive modes:

 "containers": {
 "modes": {
 "mode1": "detached",
 },

We define port mappings for 80 and 443:

 "ports": {
 "port1": ["8181:80"],
 "port2": ["8443:443"]
 },

And, in this example, no permanent volumes will be mounted:

 "persist-data": {
 "mount": "false",
 "root-name": "",
 "directories": {
 "directory1": "",
 "directory2": "",
 "directory3": ""

 }
 }
 }
 },

Finally, we define the cloud settings:

 "lfphp-cloud": {
 "account": "infoetistacom3",
 "username": "info@etista.com",
 "token": "a1b2c3d4e5f6a1b2c3d4e5f6 "
 }
}

Here is the complete linuxforcomposer.json file used in this example:

{
 "name": "phpcl_jumpstart_lfphp",
 "description": "Demonstrates deployment using a Dockerfile",
 "single": {
 "image": {
 "dockerfile": {
 "url": "Dockerfile",
 "container-name": "phpcl_jumpstart_lfphp",
 "username": "",
 "token": ""
 },
 "linuxforcomposer": {

"php-versions": ["7.4"],
 "script": ["lfphp --mysql --phpfpm --apache"],
 "thread-safe": "false"

}
 },
 "containers": {
 "modes": {
 "mode1": "detached"
 },
 "ports": {
 "port1": ["8181:80"],
 "port2": ["8443:443"]
 },
 "persist-data": {
 "mount": "false",
 "root-name": "",
 "directories": {
 "directory1": "",
 "directory2": "",
 "directory3": ""
 }
 }
 }
 },
 "lfphp-cloud": {
 "account": "infoetistacom3",
 "username": "info@etista.com",
 "token": "a1b2c3d4e5f6a1b2c3d4e5f6 "
 }
}

Now we need to define the Dockerfile.

Example Dockerfile
Although advanced Linux for Composer usage allows for a docker-compose configuration, for the
purposes of this guide we follow the single-service-single-container paradigm. Accordingly, all you
need to do is to create a normal Dockerfile and confirm that your application runs in its container.

The tricky part is that due to the way the container gets created on the cloud service, you will be
unable to copy any files into the container as it’s being built. Accordingly, make sure that any
external assets you need can be obtained via an Internet download.

If you just need a single file that is accessible via HTTP, in your Dockerfile, simply add a directive
along these lines:

RUN wget --output-file=FILE http://dns.name.com/path/to/remote/file

In any event, be sure to place all your initialization scripts in a git repository accessible over the
Internet, along with your application code. As an example, in the Dockerfile, assuming your code is
on github.com, add the following:

RUN git clone https://github.com/your/repository

To preserve any data, one technique is to store a skeleton structure in your git repo, and have your
init script create the database, grant permissions, and restore the table structure. You can then use
phpMyAdmin, provided by the cloud service, to restore any data you have backed up. (Er … you
did back up your data, didn’t you?)

In our sample Dockerfile we first indicate the source of the original image:

FROM asclinux/linuxforphp-8.2-ultimate:7.4-nts

Next, we clone from the repository:

RUN git clone https://github.com/path/to/repo /target/dir/

Note that if your repository is private, generate a security access token, and use the following
syntax:

RUN git clone https://user:token@github.com/path/to/repo /target/dir

If you've updated your source code, don't forget to inform the Docker daemon there's been a change
… otherwise it will continue to pull from the original branch!

RUN git clone https://github.com/path/to/repo --branch NEW /target/dir/

You might then wish to run an initialization script (contained in your newly restored repo):

RUN chmod +x /srv/jumpstart/init.sh
RUN /srv/jumpstart/init.sh

https://help.github.com/en/github/authenticating-to-github/creating-a-personal-access-token-for-the-command-line

After that you will probably need to assign the web server document root to the correct directory
path. In this example, the sample application is built using the Mezzio framework (formerly Zend
Expressive), so the document root needs to be the public folder off the project root of ip_demo:

RUN \
 cd /srv && \
 mv -f -v /srv/www /srv/www.OLD && \
 ln -s -f -v /srv/jumpstart/ip_demo/public /srv/www
RUN chown apache:apache /srv/www
RUN chown -R apache:apache /srv/jumpstart
RUN chmod -R 775 /srv/jumpstart

Finally, depending on the original source image chosen, you can designate an entry point and
followup command. As our source image is Linux for PHP (LfPHP), the entry point is the lfphp
command, and our commands are flags that activate MySQL, PHP FastCGI processing module, and
Apache:

ENTRYPOINT ["/bin/lfphp"]
CMD ["--mysql", "--phpfpm", "--apache"]

Here is the complete Dockerfile:

FROM asclinux/linuxforphp-8.2-ultimate:7.4-nts
MAINTAINER doug.bierer@etista.com
RUN git clone https://github.com/phpcl/phpcl_jumpstart_lfphp /srv/jumpstart
RUN chmod +x /srv/jumpstart/init.sh
RUN /srv/jumpstart/init.sh
RUN \
 cd /srv && \
 mv -f -v /srv/www /srv/www.OLD && \
 ln -s -f -v /srv/jumpstart/ip_demo/public /srv/www
RUN chown apache:apache /srv/www
RUN chown -R apache:apache /srv/jumpstart
RUN chmod -R 775 /srv/jumpstart
ENTRYPOINT ["/bin/lfphp"]
CMD ["--mysql", "--phpfpm", "--apache"]

Next we have a look at the init script.

https://docs.mezzio.dev/mezzio/

You Mentioned an "Init" Script?
The init script is a simple BASH (or other shell) script that can perform any desired initialization. In
our example, there are two main tasks to be performed: use Composer to install third party software
into our demo app, and to initialize the database. We also add the ServerName to the Apache
httpd.conf file. Here is the complete script:

#!/bin/bash
echo "ServerName jumpstart" >> /etc/httpd/httpd.conf
cd /srv/jumpstart/ip_demo
php composer.phar self-update
rm -f /srv/jumpstart/ip_demo/composer.lock
php composer.phar install
echo "Restoring database ..."
/etc/init.d/mysql start
sleep 5
mysql -uroot -v -e "CREATE DATABASE jumpstart;"
mysql -uroot -v -e "CREATE USER 'jumpstart'@'localhost' \
 IDENTIFIED BY 'password';"
mysql -uroot -v -e "GRANT ALL PRIVILEGES ON *.* TO 'jumpstart'@'localhost';"
mysql -uroot -v -e "FLUSH PRIVILEGES;"
mysql -uroot -v -e "SOURCE /srv/jumpstart/sample_data/jumpstart.sql;" jumpstart

The next step is to test everything locally.

Testing the Deployment Locally
In order to test the deployment locally, we must have Docker installed. In addition, of course, both
Composer and Linux for Composer must be installed. Here is the base project structure listing:

Issue this command, from the root directory of your project where the linuxforcomposer.json file
resides, to have Linux for Composer start the container running locally:

php vendor/bin/linuxforcomposer.phar docker:run start

This launches docker build using the Dockerfile specified under the dockerfile:url key as shown
here:

Once finished, as we specified detached mode, the container, if built successfully, should now be
running:

If we now open a browser to http://localhost:8181/ we should see the demo application running:

If you get a blank screen, or otherwise you note that all is not well, it's time to perform some
troubleshooting.

http://localhost:8181/

Troubleshooting Your Deployment
If you get a blank screen, you can shell into the running Docker container by making a note of its
ID or tag, and issuing the following command:

docker exec -it <CONTAINER ID OR TAG> /bin/bash

You can then consult the appropriate error log to determine the nature of the error:

If you encounter this error: Attention: before starting new containers … it's most likely that a

linuxforcomposer.pid file exists in the vendor/composer directory. To get rid of this error, stop the
running container by moving the project directory and issuing this command:

php vendor/bin/linuxforcomposer.phar docker:run stop

Or, if the container has already been stopped (e.g. using docker container stop), simply delete
the /path/to/project/vendor/composer/linuxforcomposer.pid file.

NOTE:
Once you have finished troubleshooting, don't forget to push your changes to the
repository!

One final point is that you might find yourself in the situation where no matter how many times you
fix a bug in the application code, you still keep getting the same error or blank screen. This is
extremely frustrating and can waste hours and hours of your time.

In this situation, the most likely culprit is one form or another of caching. Here are some suggested
remedies:

• Make sure you have pushed all changes to the git repo. If your Dockerfile clones from a git
repo, and you haven't pushed changes, you're going to keep getting the same buggy code.

• When testing locally, Docker will create a separate layer for each RUN directive in the
Dockerfile. One of these will most likely be the layer that clones from the git repo. In this
case, no matter how many times you push changes, they never appear when the image is
built as Docker logically draws from its own cache. Accordingly you'll need to get rid of the
image which forces Docker to rebuild everything.

• Finally: you application code itself might have caching enabled, and you might accidentally
be including this when you push changes to the repo. Create a .gitignore file that excludes
any application caching directories.

NOTE:
When you use Linux for Composer to stop a running container, you are asked if you wish
to commit the change to your local Docker repo. If you choose yes, the next time you use
Linux for Composer to run the container, it draws from cache, saving time.

Also, very importantly, your repository source code has most likely changed. Docker is unaware of
the change, however, unless you change the git clone command in your Dockerfile. Accordingly,
it's not a bad idea to either (A) use git tag, or (B) create a new branch, to record your changes.
When you've got a new version of the code stored in the repo as either a new branch, or a new tag,
you can modify the git clone command in your Dockerfile by adding the --branch
<NEW_BRANCH> or --branch <TAG> options. When Linux for Composer uploads your
revised Dockerfile, the Docker daemon on the cloud service will recognize the change, and pull a
fresh copy from the repo instead of using its Docker cache.

Now it's time to deploy to the cloud service!

Deploying to Linux for PHP Cloud Services
Once you have the project running successfully on your local computer, it's time to deploy to the
cloud service. Double check your IP address and if it's changed for some reason, generate a new
access token, as described above.

To deploy to the cloud service, from the root directory of your project where the
linuxforcomposer.json file resides, issue this command:

php vendor/bin/linuxforcomposer.phar docker:run deploy

If you see this message, double check to make sure your account name, username and token are
correctly defined. Also, make sure that your current, valid IP address is at the top of the list:

Otherwise, you should get a success message as shown here:

You will then need to wait until your service has been deployed. The time it takes to run locally
should give you an indication how long this will take. In the meantime, monitor your dashboard
from your cloud services account.

NOTE: although an initial byte count shows up, possibly in the gigabyte range, this
represents what goes to the Docker daemon: not what is uploaded. The only thing
uploaded is the Dockerfile.

During deployment the server status button [1] will be either yellow, indicating status unknown, or
red, indicating server stopped:

Click on Website: View [2] to have a look at your newly deployed application:

Summary
In this guide you learned how to deploy an application using Linux for Composer. You learned
about the major configuration settings in the linuxforcomposer.json file, including how to define a
single image using either the LfPHP Docker image, or a custom image built from a Dockerfile. In
addition you learned settings that correspond to various docker run directives include port and
volume mappings.

You then went through a sample deployment using a custom Dockerfile deploying directly to Linux
for PHP Cloud Services. There was also a discussion on troubleshooting and various error
conditions that might arise.

As the saying goes … that's all folks. I hope you enjoy using this technology as much as do I.
Happy coding and even happier deployment!

	What the Heck is Linux for Composer?
	What Do I Need to Start?
	What About the Cloud Service?
	How Do I Make the Deployment Secure?
	How Do I Install Linux for Composer?
	How Do I Configure Linux for Composer?
	Linux for Composer JSON File Keys
	Defining a Container Based Upon the LfPHP Docker Image
	Defining a Container Based Upon a Custom Dockerfile
	Defining Container Runtime Settings
	Port Mapping Using Linux for Composer
	The single : image : containers : ports sub-key is an array that maps ports between the local computer and the Docker container. Each additional array element represents a different port. In this example, there a single image defined by a Dockerfile. Local port 8181 is mapped to container port 80, and local port 8443 is mapped to container port 443:
	When you plan to deploy multiple containers, it starts to get confusing. Each sub-sub-key is itself an array. Each sub-sub-sub array maps to each of the multiple containers. Multiple containers are launched, for example, when you specify more than one version of PHP.
	In this example, two containers are launched: one based upon PHP 5.6, the other upon PHP 7.4:
	When we get to port mappings, the following example has local ports 8181 and 8443 mapped to the PHP 5.6 container ports 80 and 443 respectively. For the PHP 7.4 container, on the other hand, the local host ports 8282 map to the 7.4 container's port 80, and port 8543 maps to the 7.4 container's port 443:
	Next we have a quick look at configuring LfC to use docker-compose.
	Defining a Container Using Docker-Compose
	Defining a Container Using LfPHP Cloud

	LfPHP Cloud Services Deployment Example
	Sample Linux for Composer JSON File

	Example Dockerfile
	You Mentioned an "Init" Script?
	Testing the Deployment Locally
	Troubleshooting Your Deployment
	Deploying to Linux for PHP Cloud Services

	Summary

